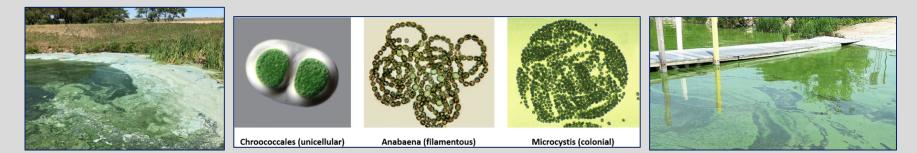
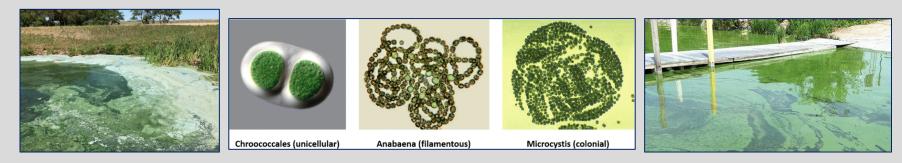

Toxins - Cyanobacteria

Harmful Algal Blooms (HABs)


- Cyanobacteria begin multiplying very quickly
- Often occur in late summer or early fall
- Cyanotoxin Production

Toxins - Cyanobacteria

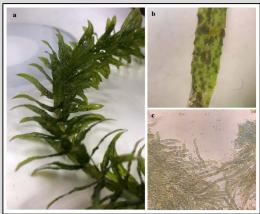
Cyanobacteria Toxin Production


- Multiple types impacting skin, liver, and nervous system
 - Cytotoxins, Hepatoxins, Neurotoxins
- Most Commonly Reported:
 - Hepatoxins
 - Microcystins
 - Cylindrospermop-sin
 - Neurotoxins
 - Anatoxins
 - Saxitoxins

Toxins - Cyanobacteria

Cyanobacteria Toxin Production

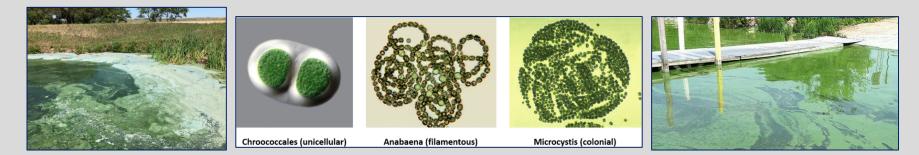
- Multiple types impacting skin, liver, and nervous system
- Cyanotoxins can cause disease and death of aquatic and terrestrial critters (terrestrials are more susceptible)
 - Symptoms: Nausea, liver hemorrhaging, central nervous system dysfunction



Toxins - Cyanobacteria

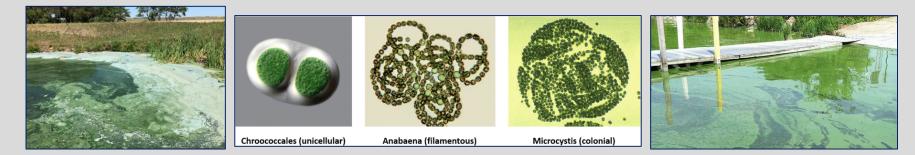
Cyanobacteria Toxin Production

- Multiple types impacting skin, liver, and nervous system
- Cyanotoxins can cause disease and death of aquatic and terrestrial critters (terrestrials are more susceptible)
 - Symptoms: Nausea, liver hemorrhaging, central nervous system dysfunction
 - Wildlife Impacts: (Wildlife, domestic stocks and pets)
 - Dogs swimming in ponds/lakes
 - AVM: neurological disease impacting birds of prey, waterfowl, fish,...
 - Cyanobacteria found on hydrilla



Toxins - Cyanobacteria

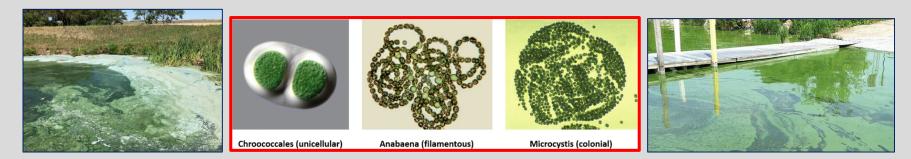
Cyanobacteria Toxin Production


- Multiple types impacting skin, liver, and nervous system
- Cyanotoxins can cause disease and death of aquatic and terrestrial critters (terrestrials are more susceptible)
 - Symptoms: Nausea, liver hemorrhaging, central nervous system dysfunction
 - Human Impacts:
 - Exposure: ingesting water, water related activities, inhaling aerosols
 - Most acute impacts from ingestion
 - Neurological diseases have been related back to exposure

Toxins - Cyanobacteria

Cyanobacteria Toxin Production

- Multiple types impacting skin, liver, and nervous system
- Cyanotoxins can cause disease and death of aquatic and terrestrial critters (terrestrials are more susceptible)
- Even if toxin-producing cyanobacteria are present within a system, it does not mean they are producing toxins.
 - Environmental and physiological factors that drive toxin production are still not well understood



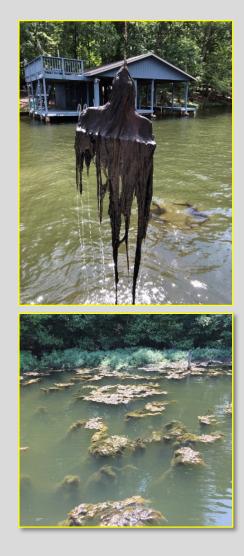
Toxins - Cyanobacteria

Cyanobacteria Toxin Production

- Governmental HAB response focus on planktonic forms of cyanobacteria due to their high toxicity potential
 - EPA drinking and shellfish production restriction criteria

Toxins - Cyanobacteria

Cyanobacteria Toxin Production


• Governmental HAB response focus on planktonic forms of cyanobacteria due to their high toxicity potential

<u>Toxins - Lyngbya</u>

Lyngbya Toxin Production

- Earliest studies from 1990's Guntersville Reservoir, AL
 - Paralytic Shellfish Poison (PSP) neurotoxins
- Recent studies detected an analogue to the PSP neurotoxin, saxitoxin (neurotoxin)
 - St. Lawrence River, Canada
 - Butterfield Lake, NY
 - Lake Wateree, SC
- The saxitoxin derivatives associated with lyngbya is *less potent* than other PSP-producing cyanobacteria
 - Direct contact presents a relatively low risk to humans and animals

<u> Toxins - Lyngbya</u>

Lyngbya Toxin Production

- Lyngbya produced toxins can impact skin
 - Swimmer's Itch
- Six known neurotoxins produced directly by lyngbya:
 - L. wollei toxins (LWTs 1-6)
 - All related to saxitoxin
 - Vary widely in toxicity
 - Some are considered nontoxic

NC STATE UNIVERSITY